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1. INTRODUCTION

In the realm of medical diagnostics and patient care, the significance of accurate and timely disease
detection cannot be overstated [1], [2]. One of the pivotal tools in modern medicine is medical imaging,
particularly in the context of identifying diseases such as lung cancer, brain tumors, and chest abnormalities
[3]-[5]. These life-threatening conditions, affecting millions worldwide, require early diagnosis for effective
treatment and improved patient outcomes. Medical imaging not only aids in disease identification but also
guides medical practitioners in formulating precise treatment plans [6], [7]. The quality of healthcare
provided is significantly influenced by the robustness of the algorithms used in classifying and diagnosing
these conditions [8]. It is within this context that this research is conducted.

Despite the advances in medical imaging and the availability of diverse datasets, the classification of
medical images remains a challenging task [9]. A major challenge arises from the imbalanced distribution of
data in multi-class medical datasets. The rare occurrence of certain diseases in comparison to others often
leads to skewed class distributions, potentially affecting the performance of classification algorithms. The
need to accurately diagnose and classify instances of lung cancer, brain tumors, and chest abnormalities has
motivated this study. Furthermore, addressing the issue of class imbalance in medical datasets is crucial to
ensure that classification algorithms provide reliable results.
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The primary objective of this research is to conduct a comprehensive performance analysis of
classification algorithms on an imbalanced multi-class medical dataset. The study aims to evaluate the
suitability and effectiveness of various classification algorithms in diagnosing medical conditions based on
medical images. The research endeavors to identify the strengths and weaknesses of these algorithms, with
the ultimate goal of enhancing the accuracy and reliability of medical image classification.

This research seeks to answer the fundamental question of how different classification algorithms
perform when applied to an imbalanced multi-class medical dataset encompassing lung cancer, brain tumors,
and chest abnormalities [10], [11]. In addition to this central inquiry, it aims to unravel the strengths and
weaknesses of individual algorithms support vector machine (SVM), machine learning (ML) in medicine:
Performance calculation of dementia prediction by SVM, k-nearest neighbors (K-NN), artificial neural
network (ANN), and stochastic gradient.

Descent (SGD) in the context of medical image classification, particularly addressing the challenges
posed by imbalanced class distributions [12]-[19]. Furthermore, the research explores the potential of K-fold
cross-validation with a value of 5 in mitigating class imbalance effects and enhancing algorithm
performance. By addressing these research questions, this study endeavors to offer valuable insights into the
performance of classification algorithms on imbalanced multi-class medical datasets, thus improving
diagnostic accuracy and healthcare quality.

The following details the methodology of this study, including the data collection process, image
segmentation techniques, feature extraction methods, and model evaluation metrics. The results will be
analyzed for each algorithm, followed by interesting conclusions and future implications.

2. METHOD

To provide a systematic and structured approach, this research adopts the methodological
framework illustrated in Figure 1. Figure 1 delineates the stages, starting from the collection of medical
image data to the classification performance evaluation. Detailed explanations for each stage are presented in
the following subsection.

Dataset Collection
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Figure 1. Visualization of the research methodology flowchart

2.1. Medical issue data collection

The study used five medical image datasets with multiclass categories taken from Kaggle.com, with
varying number of classes. The Chest CT-Scan dataset has four classes with a total of 613 data, each of which has
an imbalanced data distribution. The COVID-19 data set has three classes with 251 data in total, as well as with a
imbalance in the distribution of data. The IQ-OTH/NCC-Lung Cancer dataset features three classes with a total of
1097 data points, similarly characterized by data distribution imbalance. Furthermore, the Brain Tumor
Classification (MRI) dataset is composed of four classes, including a total of 2870 data points with an imbalanced
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data distribution. Finally, the Alzheimer's Parkinson diseases dataset consists of three classes with a total of 6477
data, and an imbalanced distribution of data. In addition, the research applied oversampling and undersampling to
balance the data on all datasets [20]-[22]. This research begins with the data exploration stage to understand the
characteristics of the image datasets used. Medical issue data collection involves visualization as well as statistical
analysis to identify patterns, anomalies, and important information in data sets. General information on the datasets
used in this study can be found in Table 1.

Table 1. Information datasets

Datasets Number of ~ Number of Number Atribute Missing
cases attribute Name of class Number in each class characteristics value
195
115 .
Chest CT-Scan 613 7 4 148 Numeric No
155
111
COVID-19 251 7 3 70 Numeric No
70
120
1Q- OTH/N CC 1007 7 3 561 Numeric No
-Lung Cancer
416
826
Brain Tumor Classification 822 .
(MRI) 2870 7 4 395 Numeric No
827
. . 2561
Alzheimer Parkins on 6477 7 3 3010 Numeric No
Diseases 906

2.2. Pre-processing data

This research involves several stages of preprocessing, namely, feature segmentation, feature
extraction, and data balancing. Early stages in data preprocesing involve image segmentation using the
Canny method [23]. This step aims to separate objects from the background on the image, improve data
quality, and prepare them for the feature extract stage. The Canny algorithm belongs as a popular method in
edge detection on image processing, involving several stages such as smoothing with Gaussian filters,
gradient calculation, non-maximum suppression, and the application of thresholds to produce sharper edges
[24]. The mathematical formula underlying this method is listed in (1).

E (x,y) = VGx (x,)? + Gy (x, y)? @

Here, Gx (x, ¥)? and Gy(x, y)? espectively are the gradients of the image in the horizontal and vertical
directions. The results of image segmentation using the Canny method on medical datasets are shown in Figure 2.
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Figure 2. Image segmentation results canny medical datasets
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After the segmentation process, the next stage is the extracting of features using the hu-moment
method. Hu-moments is one of the methods used for extracting features of shapes or contours of objects in
images. This feature has invarian properties to translation, rotation, and scaling, so it is suitable for use in
shape recognition applications. The formula for calculating the center moment w4 can be seen in (2).

Mij
hij = N2+ )
00

Where x. and y. are the mass center of the image, p + g is the order of the moment, and f(x, y) is
the pixel value on the coordinate (x, y). Figure 3 shows a visualization of extracting humoment features using
Scatter Plot and Heatmap on each dataset.
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Figure 3. Plot scatter visualization output extraction feature: hu-moment on each chest ct-scan dataset

Resampling, a concept in data science, refers to efforts aimed at maintaining a balance in the
distribution among different classes or labels within a dataset. This is particularly crucial in the context of
classification or data analysis involving imbalanced classes. You can observe the data resampling
visualization for under-sampling and over-sampling in Figure 4.

Under-sampling is a technique employed in machine learning to address class imbalance by
reducing the number of samples from the majority class. Conversely, over-sampling involves increasing the
number of samples in the minority class to achieve a balanced dataset. This balancing process is crucial to
prevent the model from exhibiting bias towards the majority class or disregarding the minority class. As
depicted in Table 2, implementing these strategies helps to mitigate potential biases and improve the model's
overall performance.
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Figure 4. Data resampling visualization (a) Under-sampling and (b) Oversampling

Table 2. Data balancing

Balancing data Datasets . .
in class CHEST COVID-19 1Q-OTH/NCC-lung Bralp _tum_or Alzhelmer
CT-SCAN cancer classification parkinson diseases
_ oo 111 561 827 3010
Oversampling 195 111 561 827 3010
111 561 827 3010
195

_ o 70 120 395 906
Undersampling 115 70 120 395 906
115 70 120 395 906

2.3. Classification

Classification is used to identify specific patterns or characteristics within data that distinguish each
class. By leveraging the information contained in the data, the classification function makes decisions
regarding the most appropriate class for new objects that have not been classified before. The classification
algorithms used in this study include SVM, naive Bayes, K-NN, ANN, and SGD [25], [26].

SVM is a ML algorithm used for classification and regression tasks. The goal is to construct a
hyperplane that has the maximum margin between different classes in the dataset [27]. The margin is the
distance between the hyperplanes and the nearest points of each class. SVM can be used for both binary and
multi-class classification problems. SVM can also be applied to multi-class classification problems using
approaches such as one-versus- rest (OvR) or one-versus-one (OvO). Here is the basic SVM formula for the
problem of multiclass classification with the OVR approach can be seen in (3).

y(x) = argmaxi(wi - x + b)) €))

Where, y(x) is the predicted class or label for x data, argmax; is the maximum argument
operation, which produces the index i that produce the largest value among the calculated elements, w; are the
weight vectors associated with class i, x are the vectors of the input data that are to be forecast, b; is the bias
or shift associated to class i.

naive Bayes is a probabilistic classification algorithm based on the Bayes theorem. This algorithm
assumes that the features in the dataset are conditionally independent of the target class [28], [29]. Although
these assumptions are very simple and may not always be true, naive Bayes often provides good performance
in many classification tasks, especially in the case of high-dimensional text and data. Naive Bayes' basic
formula for classification can be seen in (4).

(PXIOP(C)
PCIX) =—, (4)

Where, P(C | X) is a posterior probability, a class C probability occurs on X data, P(X|C) is the
probability of the likelihood, that is, the probability of the data X occurs if class C occurs, P(C) was a prior
probability that class C occurred without additional information, and P(X) was the Probability of data X
occurring, also called a normalization factor.
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K-NN is a classification algorithm based on the distance between points in a feature space. To
classify a sample, this algorithm searches for the nearest sample in the exercise data set and takes the
majority of the class from those neighbours as a class prediction. The basic formula of K-NN for
classification can be seen in (5).

y(x) = mode ({yi| xi is a neighbor k(x)}) (5)

Where, y(x) is the class prediction created for the input data x, y: is a class of the i -neighbor of the x
input data, x; is the data neighbor of i of the data input x, k(x) is the number of nearest neighbors to be used in
the prediction for the x entry data, and mode(.) refers to the most frequently appearing value in the assembly.

ANN is a computing model inspired by biological neural tissue. It consists of layers of artificial
neurons that are interconnected [29]. Each neuron takes input, processes it, and gives its output to the next
neuron. ANN can be used for a variety of tasks, including classification. The basic ANN formula for
classification can be seen in (6).

yx) = fw - x + b) (6)

Where, y(x) is the output or prediction generated by the model for input data x, f(.) is the activation
function, which transforms the input value into a more structured output, w is the weight vector that connects
input x to output y, and b is the bias or shift added to the multiplication result w - x.

SGD is an optimization algorithm used to train a machine learning model, including a classification
model. This algority seeks a weight that minimizes a loss function through repeated iterations by updating the
weight using the gradient of a cost function. The basic SGD formula for the problem of multiclass
classification, in particular with the OvR approach, can be seen in (7).

Wi+l = We — 10 V]i(Wt) (7)

Where, we+1 is the weight vector that is updated on iteration t + 1, w is the weights vector on the
current iterations (iteration t) n is the learning rate, which controls how much learning step is taken in
each iterated, and VJi(w:) is the gradient of the J:(w) loss function against the w -weight vector in the
training system i.

2.4. Evaluation matrics

Evaluating the performance of classification models heavily relies on evaluation metrics that
provide a comprehensive perspective. One such metric is Balanced Accuracy, which combines True Positive
Rate (accurate positive identification) and True Negative Rate (accurate negative identification), offering a
balanced view between both classes [27], [30], [31]. Additionally, Accuracy measures overall predictions,
while Precision emphasizes accurate positive identification. Recall, on the other hand, assesses the overall
identification of positive cases. Likewise, F-measure, by harmonizing Precision and Recall, provides a
holistic perspective. A strong understanding of these metrics is crucial for accurate interpretation and model
enhancement. The equations for Balanced Accuracy, Accuracy, Precision, Recall, and F-measure can be
found in (8) to (11).

Accuracy = __(IP+TN) (8)
(TP+TN+FP+FN)
Pericision = —— 9
(TP+FP)
TP
Recall = TPEN) (10)
F — measure = 2(presisixrecall) (11)

(presisi+recall)

3. RESULTS AND DISCUSSION
The research findings provide a comprehensive performance analysis of various machine learning
algorithms on an imbalanced multi-class medical dataset. Three distinct scenarios, each employing a different
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data processing technique, were considered: no processing (Table 3), oversampling (Table 4), and
undersampling (Table 5). Here, we present the results and discuss their implications.

Table 3 presents the performance results of ML algorithms on the original dataset before any
processing. Notably, K-NN outperforms other algorithms across multiple metrics. It achieves the highest
balanced accuracy of 0.53, accuracy of 0.57, precision weighted of 0.66, recall weighted of 0.57, and F1
weighted of 0.56. This suggests that K-NN is well-suited for classifying lung cancer, brain tumors, and chest
abnormalities, showcasing its adaptability in a multi-class medical image classification context. On the other
hand, algorithms like SVM and naive Bayes lag behind in performance. This may be attributed to their
limited ability to handle imbalanced datasets, resulting in suboptimal classification.

Table 3. Performance results before balancing the datasets

> Rata-rata SVM  Naive Bayes K-NN ANN SGD
Balencend accuracy  0.43 0.44 0.53 052 052
Accuracy 0.52 0.47 0.57 056  0.56
Precision weighted ~ 0.43 0.48 0.56 056 0.56
Recall weighted 0.52 0.47 0.57 056 0.56
F1 weighted 0.42 0.4 0.56 0.55 055

Table 4 shows the performance results after applying oversampling to the dataset. K-NN maintains its top
position with the highest balanced accuracy (0.65), accuracy (0.65), and F1 weighted score (0.64). Oversampling
has significantly improved the performance of all algorithms by addressing the class imbalance issue. K-NN
effectively leverages the oversampled data to enhance its classification accuracy. While all algorithms benefit from
oversampling, K-NN continues to excel, highlighting its adaptability to changes in dataset characteristics.

Table 4. Performance results after oversampling the datasets

> Rata-rata SVM  Naive Bayes K-NN ANN SGD
Balencend accuracy 0.5 0.46 0.65 057 057
Accuracy 0.5 0.46 0.65 057 057
Precision weighted ~ 0.45 0.45 0.66 057 057
Recall weighted 0.5 0.46 0.65 057 057
F1 weighted 0.42 0.39 0.64 0.56  0.56

Table 5 reveals the performance results after implementing undersampling. K-NN remains at the
forefront with an accuracy of 0.55 and an F1 weighted score of 0.54. Notably, other algorithms, including SVM
and naive Bayes, show improvements compared to the original dataset, thanks to undersampling. Despite reducing
the training data volume, undersampling enhances the overall performance of these algorithms. However, K-NN
retains its superior performance, emphasizing its adaptability to different dataset characteristics.

Table 5. Performance results after undersampling the datasets

Y. Rata-rata SVM Naive Bayes K-NN ANN SGD
Balencend accuracy  0.49 0.46 0.55 055 055
Accuracy 0.49 0.46 0.55 055 055
Precision weighted ~ 0.46 0.45 0.55 055 055
Recall weighted 0.49 0.46 0.55 055 055
F1 weighted 041 0.39 0.54 054 054

Overall, these results consistently position K-NN as the top-performing algorithm in various multi-
class medical image classification scenarios, regardless of the data processing technique applied.
Oversampling and undersampling techniques prove effective in addressing class imbalance and improving
overall performance. While K-NN stands out as the most reliable choice, the findings contribute to our
understanding of the impact of different data processing strategies in medical image analysis.

The findings of this research have significant practical implications for the healthcare sector,
underscoring the importance of algorithm selection and data processing techniques in enhancing disease
diagnosis and medical image analysis. However, it is important to note that the research findings are
constrained by the use of a specific dataset, which may impact the generalizability of the results to other
medical image datasets. Additionally, the utilization of oversampling and undersampling techniques may not
entirely address the challenges posed by class imbalance. Therefore, it is recommended that future research
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explores more advanced oversampling and undersampling techniques or incorporates deep learning models
for medical image analysis. Furthermore, expanding the research to encompass a diverse range of medical
image datasets and integrating clinical validation will provide a more comprehensive understanding of
algorithm performance in real-world healthcare settings.

4. CONCLUSION

In concluding this study, we have conducted a comprehensive examination of classification
algorithms on a multi-class medical dataset marked by imbalances, specifically concentrating on lung cancer,
brain tumors, and chest abnormalities. Our findings underscore the pivotal role of algorithm selection in the
realm of medical image analysis, with K-NN consistently emerging as a robust performer, displaying the
highest balanced accuracy and accuracy scores across diverse scenarios. This implies that K-NN may offer a
more equitable trade-off between precision and recall, a crucial consideration in medical diagnostics. The
outcomes of our research significantly contribute to the evolving knowledge landscape in medical image
analysis, emphasizing the imperative of choosing appropriate algorithms for specific classification tasks. The
practical implications are substantial, as the insights gained hold the potential to enhance the accuracy and
reliability of disease diagnosis in the healthcare sector. However, it is imperative to acknowledge the study's
limitations, particularly those associated with dataset-specific findings. We strongly recommend further
research to explore advanced techniques and extend the investigation to encompass a variety of medical
image datasets, ensuring robust and clinically validated results. This research serves as a foundational step
for future endeavors aimed at elevating healthcare quality through the integration of advanced technology
and machine learning.
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